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Abstract

Raman scattering of a high-intensity, short-duration, frequency-chirped laser pulse propagating

in an underdense plasma is examined. The growth of the direct forward scattered light is calculated

for a laser pulse with a linear frequency chirp in various spatiotemporal regimes. This includes

a previously undescribed regime of strongly-coupled four-wave nonresonant interaction, which is

important for relativistic laser intensities. In all regimes of forward scattering, it is shown that the

growth rate increases (decreases) for positive (negative) frequency chirp. The effect of chirp on the

growth rate is relatively minor, i.e., a few percent chirp yields few percent changes in the growth

rates. Numerical solutions based on a fully nonlinear cold Maxwell-fluid model are presented which

confirm analytical predictions. Relation of these results to recent experiments is discussed.

PACS numbers: 52.38.-r, 52.38.Bv, 52.38.Kd
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I. INTRODUCTION

High-intensity short-pulse laser-plasma interactions are of much current interest because

of their application to laser-plasma accelerators1, laser-plasma-based harmonic generation2,

x-ray lasers3, and laser-driven inertial confinement fusion schemes4. A basic phenomenon

in laser-plasma interactions is Raman scattering. The Raman scattering instability5 is the

resonant decay in a plasma of incident light, with frequency and wave number (ω0, k0), into

a plasma wave (ω, k) and scattered light (ω0± ω, k0± k). Physically, the Raman instability

occurs due to the beating of the incident and scattered light, producing a ponderomo-

tive force which generates a plasma density modulation at or near the plasma frequency

ωp = (4πe2n0/m)1/2, where e and m are the electronic charge and mass and n0 is the equi-

librium electron plasma density. The plasma density (index of refraction) modulation causes

modulation of the incident laser pulse, resulting in additional scattering, thereby producing

an instability. The transmission of laser light through a plasma, and the coupling of the

laser energy into a plasma, can be greatly affected by Raman scattering, which consequently

can have a large impact on various applications.

For example, Raman scattering in the forward direction (i.e., the scattered light is co-

propagating with the incident light) can be used to drive the self-modulated laser wakefield

accelerator (for a review, see Ref. 1), in which a long (compared to the plasma wavelength)

laser pulse becomes modulated and produces a large amplitude plasma wave with phase

velocity near the speed of light vϕ = ω/k ' c. This plasma wave, with 10–100 GeV/m

accelerating gradients having been demonstrated using present laser technology, can be

used to accelerate charged particles to high energies6–9. In laser fusion applications, such as

the fast-ignitor4, the excitation of Raman instabilities can yield poor coupling of the laser

to the energetic electrons. The use of finite-bandwidth laser pulses has been considered for

enhancement or suppression of Raman instabilities10,11, and therefore as a means to control

Raman scattering in these applications.

Several ultra-intense laser facilities around the world have been investigating the effect

of frequency-chirped (i.e., frequency correlated to longitudinal position within the pulse)

laser pulses propagating in an underdense plasma12–14. Experimental evidence by Faure et

al.12 has shown that the growth of the Raman instabilities is independent of the frequency

chirp. Other experiments by Yau et al.13 have reported enhanced efficiency of the Raman
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forward scattering instability for positively-chirped laser pulses, and recent experiments

by Leemans et al.14 reported frequency chirp induced asymmetries in the self-modulated

laser wakefield electron yield. In addition, two-dimensional particle-in-cell (PIC) computer

simulations presented in Ref. 15 claim enhancement of Raman forward scattering instabilities

for positively-chirped laser pulses, however, these simulations assumed a large bandwidth

(20%), an order of magnitude beyond that used in present-day experiments12–14.

In this paper, we analyze the Raman forward scattering (RFS) of a short frequency-

chirped laser pulse of relativistic-intensity propagating in an underdense plasma, and calcu-

late the effect of a correlated frequency chirp on the growth of the Raman instability using

the coupled relativistic Maxwell-fluid equations. In Sec. II, we review the basic Maxwell-

fluid equations for the study of laser propagation in an underdense plasma. In Sec. III, the

spatiotemporal growth of the plasma wave generated by RFS is calculated for a laser pulse

with a linear frequency chirp in various spatiotemporal regimes. This includes a previously

undescribed strongly-coupled four-wave nonresonant regime, which is important for rela-

tivistic laser intensities. It is shown that the growth rate increases (decreases) for positive

(negative) chirp in all regimes of the RFS instability. The RFS growth rates are summarized

in Sec. III F. In Sec. IIIG we examine the asymmetry between plasma wave generation using

a laser pulse with positive and negative frequency chirp. It is shown that the effect of chirp

on the growth rate is relatively minor, i.e., a few percent chirp yields few percent changes

in the growth rates. In Sec. IV, numerical solutions of the full Maxwell-fluid equations are

presented which confirm the analytic predictions. Section V presents a summary of the

results, and discusses their relation to recent experiments. A calculation of chirped-pulse

laser propagation in an underdense plasma neglecting the plasma response is presented in

Appendix A. The dispersion relation for Raman scattering of an infinite homogeneous laser

pulse is reviewed in Appendix B.

II. BASIC FORMULATION AND ASSUMPTIONS

In this section we describe the basic set of equations which govern the propagation of

radiation in underdense plasmas. A one-dimensional (1D) model of the laser-plasma interac-

tion is considered. A 1D model of the evolution of the laser pulse propagating in the plasma

will be valid provided k2
pr

2
s � 1, where rs is the laser spot size and kp = ωp/c. The 1D fields
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associated with the pump laser, scattered light, and plasma response can be described by the

transverse vector and the scalar potentials. In the Coulomb gauge, the Maxwell equations

for the fields can be expressed in 1D as
[

∂2

∂z2
− ∂2

∂(ct)2

]

a = k2
p

n

γn0

a , (1)

∂2φ

∂z2
= k2

p

(

n

n0

− 1

)

, (2)

where a and φ are the transverse vector and scalar potentials respectively normalized to

mc2/e. Note that, in the 1D approximation, conservation of transverse canonical momentum

yields γβ⊥ = a for an initially quiescent plasma, where γ = (1−β2
z−β2

⊥
)−1/2 is the relativistic

Lorentz factor, and βz and β⊥ are the electron longitudinal and transverse fluid velocities

respectively normalized to the speed of light.

A cold-fluid model of the neutral plasma is assumed. Thermal effects may be ignored

when the quiver velocity is much greater than the electron thermal velocity and the thermal

energy spread is sufficiently small such that electron trapping in the plasma does not take

place. The ions are also assumed to be stationary, which is typically the case for short-pulse

(. 1 ps) laser interactions in underdense plasmas. The cold fluid equations can be expressed

in 1D as
(

∂

∂ct
+ βz

∂

∂z

)

(γβz) =
∂

∂z
φ− 1

2γ

∂

∂z
a2 , (3)

∂n

∂ct
+

∂

∂z
(nβz) = 0 , (4)

where n is the plasma number density.

To study the growth of Raman instabilities, we consider a density perturbation δn =

n/n0− 1, which results from the scattering of a large-amplitude pump laser pulse apump into

daughter waves ascat, such that |apump| � |ascat|. Linearizing about the perturbations δn

and ascat, Eqs. (1)–(4) can be combined to yield

[

∂2

∂c2t2
+

k2
p

γ⊥0

]

δn =
1

γ2
⊥0

∂2

∂z2
(apumpascat) , (5)

and
[

∂2

∂z2
− ∂2

∂c2t2
−

k2
p

γ⊥0

]

ascat =
k2

p

γ⊥0

apump

[

δn− 1

γ2
⊥0

(apumpascat)

]

, (6)

where γ2
⊥0 = 1 + 〈a2

pump〉, the angular brackets denote a time average over the fast laser

period, and kpc/γ
1/2

⊥0 is the plasma frequency in the lab frame. It is convenient to work in
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the comoving variable ζ = z−ct and transform from the variables (z, t) to (ζ = z−ct, τ = ct).

We will assume that the head of the right-going laser pulse is initially at ζ = 0 and the body

of the laser pulse extends into the region ζ ≤ 0, while the plasma is unperturbed in the

region ζ > 0. In the comoving variables (ζ, τ) the linearized equations become

[

(

∂

∂τ
− ∂

∂ζ

)2

+
k2

p

γ⊥0

]

δn =
1

γ2
⊥0

∂2

∂ζ2
(apumpascat) , (7)

and
[

2
∂2

∂ζ∂τ
− ∂2

∂τ 2
−

k2
p

γ⊥0

]

ascat =
k2

p

γ⊥0

apump

[

δn− 1

γ2
⊥0

(apumpascat)

]

. (8)

We model the pump and scattered laser pulse normalized transverse vector potentials

(linear polarization is assumed) as

a = apump + ascat =
a0

2
eiϕ0 +

∑

±

a±
2

eiϕ± + c.c. , (9)

where a0 is the pump amplitude, and a± are the slowly-varying envelopes of the Stokes

(down-shifted) and anti-Stokes (up-shifted) scattered light waves. We will assume |a0| �
|a±| and a0 is a nonevolving envelope (i.e., pump depletion effects are neglected). To lowest-

order, 〈a2〉 ' 〈a2
pump〉 = |a0|2/2. The temporal and spatial derivatives of the phase determine

the local values of the pulse frequency and wave number for the pump (subscript 0) and

scattered (subscripts ±) light waves: ω0,± = −∂ϕ0,±/∂t and k0,± = ∂ϕ0,±/∂z. The plasma

density perturbation is modeled as

δn =
n̂

2
eiϕp + c.c. , (10)

where n̂ is the slowly-varying envelope of the plasma density perturbation and ϕp = kz−ωt.

The resonance condition for 1D Raman scattering requires ϕ± = ϕ0 ± ϕp.

The effect of a finite-bandwidth on parametric instabilities, such as the Raman instability,

has been extensively studied10,11 for the case of an uncorrelated, or random, frequency

bandwidth. In this work we examine the effect of a correlated frequency chirp on the

Raman instability growth rates. To isolate the effect of a correlated frequency chirp, we will

consider laser pulses such that kpσz � 1, where σz is the root-mean square pulse length of

the laser intensity, and the laser pulse vector potential amplitude is approximately uniform

within the pulse.

5



We consider a linear frequency chirp ϕ0 = k0ζ + εζ2 on the pump laser pulse. If we

also consider a Gaussian laser intensity distribution a0 = â0 exp[−ζ2/(4σ2
z)], with con-

stant frequency bandwidth σk of the laser intensity, then the linear chirp, as a function

of pulse duration and bandwidth, is ε = {[σk/(2σz)]
2 − (2σz)

−4}1/2. Therefore the full-

width-half-maximum (FWHM) relative chirp over a Gaussian pulse is ∆ke/k0 = 2εL/k0 =
√

2 ln 2[(k0σ0)
−2 − (k0σz)

−2]1/2, where σ0 is the Fourier transform-limited pulse length.

In this work we will focus our analysis on analytic solutions describing the RFS instability

with the condition k2
p/(k2

0γ⊥0) � 1, i.e., laser propagation in an underdense plasma with

group velocity of the laser approximately the speed of light. In addition, we note that high-

phase velocity plasma waves can also be generated by transverse Raman instabilities16,17;

however, in this paper we will neglect these transverse effects and consider only direct RFS.

III. RAMAN FORWARD SCATTERING

In RFS, the scattered waves, which are referred to as the Stokes (down-shifted, k− =

k0 − k) and anti-Stokes (up-shifted, k+ = k0 + k) waves, propagate in the same direction as

the pump laser pulse k± ∼ k0 � k ∼ kp. To solve Eqs. (7) and (8) for the growth of the RFS

instability, it is convenient to define χ = (a∗0a+ + a0a
∗

−
)/(2γ⊥0) − γ⊥0n̂. In the quasi-static

approximation18, χ is simply the amplitude of the plasma wave potential perturbation δφ =

φ− φ0 = (χ/2) exp(iϕp) + c.c., where φ0 = γ⊥0− 1 is the quasi-static equilibrium potential.

Using the eikonal (slowly-varying amplitude) approximation |∂τχ| � |kχ| ∼ |ωχ|/c and

|∂τa±| � |ka±| ∼ |ωa±|/c, Eq. (7) reduces to
(

∂2

∂ζ2
+ 2i

ω

c

∂

∂ζ
−Dp

)

χ =

[

k2 −Dp − 2i
(

k − ω

c

) ∂

∂ζ

]

(

a∗0a+ + a0a
∗

−

)

2γ⊥0

, (11)

where Dp = ω2/c2 − k2
p/γ⊥0 is the dispersion relation for the plasma wave. With the

eikonal approximation |∂ζa±| � |k±a±| and |∂τϕ±| � |∂ζϕ±|, the evolution equations for

the daughter waves Eq. (8) reduces to
[

2i

(

∂ϕ+

∂ζ

)

∂

∂τ
+ D+

]

a+ = −
k2

p

2γ2
⊥0

a0χ , (12)

[

−2i

(

∂ϕ−

∂ζ

)

∂

∂τ
+ D−

]

a∗
−

= −
k2

p

2γ2
⊥0

a∗0χ , (13)

where D± = ω2
±
/c2 − k2

±
− k2

p/γ⊥0 is the dispersion relation for each daughter wave. We

take the pump wave to satisfy the usual dispersion relation D0 = ω2
0/c

2 − k2
0 − k2

p/γ⊥0 = 0.
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Note that, the resonance condition ϕ± = ϕ0 ± ϕp implies ω± = ω0 ± ω and k± = k0 ± k.

The linear dispersion relation for the coupled equations Eqs. (11)–(13), assuming an infinite

homogeneous unchirped pump laser pulse, is reviewed in Appendix B. Without loss of

generality, we may take Dp = 0 and D− = 0. With D0 = 0, Dp = 0, and D− = 0,

the plasma wave number is k2 ' k2
p/γ⊥0, the anti-Stokes wave is approximately resonant

|D+/k2
0| ' 2k4

p/(γ2
⊥0k

4
0) � 1, and Eq. (11) reduces to

(

∂2

∂ζ2
+ 2ik

∂

∂ζ

)

χ =
k2

2γ⊥0

[

a∗0a+ + a0a
∗

−

]

. (14)

For definiteness, in this work we will consider a pump laser pulse with a flat-top dis-

tribution such that a0(ζ) = a0 for ζ ∈ [−L, 0] (i.e., the head of the pulse is located at

ζ = 0 and the tail of the pulse at ζ = −L), and a linear chirp on the pump laser pulse

ϕ0 = k0ζ +(∆ke/2)ζ(1+ ζ/L). The local wave number is ∂ζϕ0 = k0 +∆ke(ζ/L+1/2), such

that k0 is the central wave number and ∆e ≡ ∆ke/k0 is the relative chirp over the FWHM

pump laser pulse length. By assuming this form of the pump laser pulse, we are neglecting

pump dispersion effects. This is justified since the growth length of the Raman instabilities

is much shorter than the dispersive broadening length, as discussed in Appendix A.

Several regimes of RFS can be identified19–21, and, as the instability grows, it passes

through these various regimes depending on the value of |ζ|/τ and the intensity of the

incident laser pulse a0. Past analytical analysis on Raman instabilities19–21 has primarily

focused on nonrelativistic laser-plasma interactions where a0 � 1. In this work we perform

a relativistic analysis of the linear RFS spatiotemporal growth rates including a correlated

frequency chirp. We also show that, for relativistic intensities a0 & 1, the RFS instability

can enter a strongly-coupled regime where the growth rate of the instability becomes larger

than the plasma frequency.

A. Four-wave resonant regime

Consider the four-wave resonant interaction where both the Stokes and anti-Stokes modes

are approximately resonant, and we will assume D+ ' 0 and D− = 0. We will also assume

that we are in the weakly-coupled regime such that |∂ζχ| � |kχ|. Combining the envelope
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equations for plasma wave and scattered electromagnetic waves Eqs. (12)–(14) yields

∂2χ

∂ζ∂τ
=

k4
pa

∗

0a0

16γ4
⊥0k

[

(

∂ϕ+

∂ζ

)−1

−
(

∂ϕ−

∂ζ

)−1
]

χ

' −
k4

p|a0|2
8γ4

⊥0

(

∂ϕ0

∂ζ

)−2

χ = −Γ2
4loc χ , (15)

where

Γ4loc(ζ) =
k2

p|a0|√
8γ2

⊥0kloc

(16)

is the relativistic growth rate for the four-wave resonant RFS instability at the local wave

number of the pump laser kloc(ζ) = ∂ζϕ0. Applying the Laplace transform, L[χ(τ, ζ)] =

χ(s, ζ), to Eq. (15) yields

∂

∂ζ
[sχ(s, ζ)− χ(τ = 0, ζ)] = −Γ2

4locχ(s, ζ) . (17)

We will assume the initial condition ∂ζχ(τ = 0, ζ) = 0, i.e., the amplitude of the initial

seed plasma wave perturbation is constant throughout the pump laser pulse. Consider a

source of noise at the head of the pulse χ(τ, ζ = 0) = χ0H(τ), where H is the Heaviside

step function, such that L[χ(τ, ζ = 0)] = χ(s, ζ = 0) = χ0/s, i.e., the noise source at the

front of the pulse is constant since the laser pulse is moving into fresh unperturbed plasma.

Integrating Eq. (17) in ζ yields

χ(s, ζ) =
χ0

s
exp

{

−ζΓ2
4loc

s

[

1 + ∆e

(

1
2

+ ζ
L

)]

(1 + ∆e/2)

}

. (18)

Applying the inverse Laplace transform yields the solution for the amplitude of the plasma

wave potential inside the laser pulse (for −L ≤ ζ ≤ 0)

χ(τ, ζ) = χ0H(τ)I0

[

2Γ4eff

√

τ |ζ|
]

, (19)

where I0 is the modified Bessel function of zeroth-order. Asymptotically k2
p|ζ|τ � 1, the

amplitude of the plasma wave grows exponentially. The effective growth rate of the plasma

wave due to the four-wave resonant RFS instability is a function of position within the pump

laser pulse:

Γ4eff(ζ) = Γ4loc

[

1−∆e
|ζ|
L

(

1 +
∆e

2

)−1
]1/2

. (20)

For a positive chirp (i.e., ∆e < 0, with red wavelengths at the head and blue wavelengths

at the tail of the laser pulse), the RFS growth rate Eq. (20) is greater than the local growth
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rate throughout the laser pulse. Note that, for the unchirped case ∆e = 0, the effective

growth rate reduces to Γ4eff = Γ4 = k2
p|a0|/(

√
8γ2

⊥0k0), the usual nonlinear growth rate for

the four-wave resonant RFS instability22. For |∆e| � 1, the lowest-order correction to the

growth rate due to chirp is Γ4eff ' Γ4[1− (∆e/2)(1− |ζ|/L)].

Figure 1 shows the growth of the plasma wave amplitude χ/χ0 due to the four-wave

resonant RFS instability versus phase kpζ (location within the pump laser pulse) for the

normalized parameters: a0 = 1, k0/kp = 10, and kpL = 40. The figure shows that for

positive (negative) chirp ∆e < 0 (∆e > 0), the growth rate of the four-wave resonant RFS

instability is larger (smaller) than for the unchirped case (∆e = 0).

As Eq. (19) indicates (and shown in Fig. 1), the growth of the instability is relatively

insensitive to the frequency chirp. For example, at the center of the pulse, Γ4eff(ζ = −L/2) =

Γ4(1 + ∆e/2)−1/2, and the growth rate is changed by only 2.4% due to a 10% chirp over

the pump laser pulse (∆e = 0.1). Physically this can be understood through the resonance

condition for the laser-plasma interaction ϕ± = ϕ0 ± ϕp, which shows that the daughter

waves (with group velocity vg ' c) adopt approximately the local resonant frequency as

determined by the local frequency of the pump laser ω±(ζ) = ω0(ζ) ± kpc/γ
1/2

⊥0 . Therefore

the resonant excitation of the instability continues as the plasma modulation (with group

velocity vg � c) slips through the pulse. The weak dependence on the sign of the chirp can

be understood by considering the local growth rate. The growth of the instability at any

location inside the pulse ζ will be determined by the plasma wave generation from the head

to the location ζ. Since the local growth rate [cf. Eq. (16)] is larger at the head for positive

chirp (red wavelengths at the head), the enhancement in the growth rate for positive chirp

is a result of larger cumulative growth of the plasma density modulation from the head of

the pulse to ζ, compared to negative chirp.

In deriving the four-wave resonant RFS growth rate it was assumed that D− = 0 (i.e., the

Stokes wave is resonant) and D+ ' 0. Neglecting D+ in Eq. (12) requires |2k+a−1
+ ∂τa+| �

|D+|. Therefore, the RFS instability will be in the four-wave resonant regime provided

|a0|2|ζ|/τ � 8(kp/k0)
4. For sufficiently long times, this condition will no longer be satisfied,

and the RFS instability will transition into the four-wave nonresonant regime.
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B. Four-wave nonresonant regime

In the weakly-coupled (|∂ζχ| � |kχ|) four-wave nonresonant regime, Eqs. (12)–(14) can

be combined to yield

(

∂3

∂ζ∂τ 2
+ Γ2

4loc

∂

∂τ

)

χ ' −iΓ3
N

[

1 + ∆e

(

1

2
+

ζ

L

)]−4

χ , (21)

where we have kept the lowest-order term assuming |D+a+/(2k+∂τa+)| < 1. The relativistic

temporal growth rate of the RFS in the four-wave nonresonant regime without chirp is

ΓN =

(

k7
p|a0|2

16γ
11/2

⊥0 k4
0

)1/3

. (22)

We will assume that |Γ2
4∂τχ| � |Γ3

Nχ| such that the RFS interaction has moved from the

four-wave resonant to the four-wave nonresonant regime and we may neglect the second

term on the left-hand side of Eq. (21). Applying the Laplace transform to Eq. (21), and

assuming the additional initial condition ∂τχ(τ = 0, ζ) = 0, yields

χ(s, ζ) =
χ0

s
exp

(

−ζΓ3
N

s2

L

3∆e

{

(

1 +
∆e

2

)−3

−
[

1 + ∆e

(

1

2
+

ζ

L

)]−3
})

. (23)

The inverse Laplace transform can be evaluated asymptotically by using the method of

steepest descents, and has the solution

χ(τ, ζ) ∼ χ0 exp

[

3

4
(
√

3 + i)ΓNeff

(

2|ζ|τ 2
)1/3

]

, (24)

where the effective growth rate is

ΓNeff = ΓN

(

L

3∆e|ζ|

)1/3
{

−
(

1 +
∆e

2

)−3

+

[

1 + ∆e

(

1

2
+

ζ

L

)]−3
}1/3

. (25)

For |∆e| � 1, the lowest-order correction to the growth rate due to chirp is ΓNeff ' ΓN [1−
(2∆e/3)(1− |ζ|/L)].

In deriving Eq. (24) it was assumed that |Γ2
4∂τχ| � |Γ3

Nχ|. Using Eq. (24), this condition

reduces to |ζ|/τ � 2(γ⊥0/a
2
0)(kp/k0)

2. Therefore, for sufficiently long times, the RFS will

transition from the four-wave resonant regime (|Γ2
4∂τχ| � |Γ3

Nχ|) to the four-wave nonres-

onant regime (|Γ2
4∂τχ| � |Γ3

Nχ|). For longer times, the RFS instability can transition, for

a0 � 1, into the three-wave regime where the anti-Stokes wave can be neglected, or, for

a0 & 1, into the strongly-coupled four-wave nonresonant regime.
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C. Three-wave regime

In the three-wave regime, we assume that the anti-Stokes wave is sufficiently out of

resonance such that |D+a+| � |2k+∂τa+|. In this regime the anti-Stokes term may be

neglected, and Eqs. (13) and (14) can be combined to yield

∂2χ

∂ζ∂τ
' −Γ2

3

[

1 + ∆e

(

1

2
+

ζ

L

)]−1

χ , (26)

where

Γ3 =
k

3/2
p |a0|

4γ
7/4

⊥0 k
1/2

0

(27)

is the relativistic temporal growth rate of the RFS instability in the three-wave regime

without chirp. The solution to Eq. (26) (for −L ≤ ζ ≤ 0) is

χ(τ, ζ) = χ0H(τ)I0

[

2Γ3eff

√

τ |ζ|
]

, (28)

where the effective growth rate of RFS in the three-wave regime is

Γ3eff = Γ3

{

L

ζ∆e
ln

[

1 + ∆e
ζ

L

(

1 +
∆e

2

)−1
]}1/2

. (29)

For |∆e| � 1, the lowest-order correction to the growth rate due to chirp is Γ3eff ' Γ3[1 −
(∆e/4)(1− |ζ|/L)].

In deriving Eq. (26), the anti-Stokes wave was neglected |D+a+| � |2k+∂τa+|. Using

Eq. (28) this condition for the three-wave RFS regime yields |ζ|/τ � 16/(a2
0γ

1/2

⊥0 )(kp/k0)
5.

In addition, the weakly-coupled approximation |∂ζχ| � |kχ|, assumed in Secs. IIIA–IIIC,

will no longer be valid at long times for sufficiently intense laser pules a0 & 1. Assuming

the perturbation grows in the resonant four-wave regime, the weakly-coupled approximation

implies |ζ|/τ � (kp/k0)
2a2

0/(8γ3
⊥0). For intense laser pulses at long times the RFS will

violate this condition and transition into the strongly-coupled regime.

D. Strongly-coupled four-wave nonresonant regime

In the strongly-coupled |∂ζχ| � |kχ| four-wave nonresonant |Γ2
4∂τχ| � |Γ3

Nχ| regime,

Eqs. (12)–(14) can be combined to yield

∂4χ

∂ζ2∂τ 2
' 2kΓ3

N

[

1 + ∆e

(

1

2
+

ζ

L

)]−4

χ , (30)
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for an flat-top pump laser pulse with a linear frequency chirp. The eikonal approximation

|∂τχ| � |kχ| is still assumed since the RFS instability enters the strongly-coupled four-

wave nonresonant regime in the asymptotic limit kpτ � 1. The solution to Eq. (30) in the

asymptotic limit can be approximated as

χ ∼ χ0 exp

[

25/4(kΓ3
N)1/4τ 1/2

(

L

∆e

)1/2

×
{

[

1 + ∆e

(

1

2
+

ζ

L

)]−1

−
(

1 +
∆e

2

)−1
}1/2 ]

. (31)

For small chirp |∆e| � 1, the RFS instability in the strongly-coupled four-wave nonresonant

regime has the exponentiation |χ| ∼ |χ0| exp(N4sc), with

N4sc ' 25/4
(

kΓ3
N

)1/4
(|ζ|τ)1/2

[

1− ∆e

2

(

1− |ζ|
L

)]

. (32)

The RFS instability will be in the strongly-coupled four-wave nonresonant regime pro-

vided 16(kp/k0)
5/(a2

0γ
1/2

⊥0 ) � |ζ|/τ � (kp/k0)
2a2

0/(8γ3
⊥0). This condition will be violated for

sufficiently large pump laser intensities and propagation times, and the RFS instability will

transition into the strongly-coupled three-wave regime.

E. Strongly-coupled three-wave regime

In the asymptotic limit kpτ � 1, the RFS instability will enter the strongly-coupled

three-wave regime. In the asymptotic strongly-coupled three-wave regime, |∂ζχ| � |kχ|,
|∂τχ| � |kχ|, and the anti-Stokes wave is no longer in resonance; therefore Eqs. (13) and

(14) can be combined to yield

∂3χ

∂ζ2∂τ
' −2ikΓ2

3

[

1 + ∆e

(

1

2
+

ζ

L

)]−1

χ , (33)

for an flat-top pump laser pulse with a linear frequency chirp. The asymptotic solution to

Eq. (33) can be approximated as

χ ∼ χ0 exp

[

3

22/3
(
√

3− i)
(

kΓ2
3

)1/3
τ 1/3

(

L

∆e

)2/3

×
{

(

1 +
∆e

2

)1/2

−
[

1 + ∆e

(

1

2
+

ζ

L

)]1/2
}2/3 ]

. (34)
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For small chirp |∆e| � 1, the RFS instability in the strongly-coupled three-wave regime has

the exponentiation |χ| ∼ |χ0| exp(N3sc), with

N3sc '
33/2

22/3

(

kΓ2
3

)1/3 (|ζ|2τ
)1/3

[

1− ∆e

6

(

1− |ζ|
L

)]

. (35)

F. Summary of RFS instability regimes

Table I summarizes the exponentiation (number of e-folds) of the RFS instability for

a laser pulse with linear frequency chirp (∂2
ζ ϕ0 = k0∆e/L), for |∆e| � 1, in the regimes:

four-wave resonant (N4), four-wave nonresonant (N4nr), three-wave (N3), strongly-coupled

four-wave nonresonant (N4sc), and strongly-coupled three-wave (N3sc). In each regime the

exponentiation is increased for positive chirp (red wavelengths at the head of the pulse,

blue wavelengths at the tail, such that ∆e < 0). Physically this is due to the enhanced

local growth of the plasma density modulations at the head of the pulse for positive chirp,

compared to negative chirp, in all RFS instability regimes. The enhanced plasma density

modulations will slip through the pulse seeding the instability and producing larger growth

of the Raman instability throughout the pulse. We also note that, in the limit of no chirp

∆e = 0 and for weakly-relativistic laser intensities a0 < 1, the four-wave resonant, four-wave

nonresonant, three-wave, and strongly-coupled three-wave regime growth rates reduce to

essentially those described previously20,21. However, the strongly-coupled four-wave nonres-

onant regime is a new regime of RFS, which has not been previously analyzed. This new

regime is only important for relativistic laser intensities.

Figure 2 shows schematically the regimes of the FRS instability in (a0,|ζ|/τ) parameter

space for k0/kp = 10. Initially the instability is dominated by the four-wave resonant mode

(region 1 of Fig. 2). As the propagation time increases, the instability transitions into the

four-wave nonresonant regime (region 2 of Fig. 2). Note that the instability always enters

the four-wave nonresonant regime before moving into the strongly-coupled regime. At later

propagation times, the instability will transition into the three-wave regime (region 3 of

Fig. 2) for nonrelativistic interactions a0 � 1, or the strongly-coupled four-wave nonresonant

regime (region 4 of Fig. 2) for relativistic interactions [a4
0/γ

5/2

⊥0 > 27(kp/k0)
3]. For sufficiently

long times, provided the interaction has not become nonlinear, the RFS instability will

transition into the strongly-coupled three-wave regime (region 5 of Fig. 2).

In this work a 1D model was assumed. The 1D approximation will be valid for laser pulse
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evolution if the transverse Laplacian ∇2
⊥

in the wave equation operator can be neglected

compared to the evolution operator for the scattered daughter waves 2k±∂τ [cf. the left-

hand side of Eq. (12)]. If we assume that the transverse gradient scales as the laser spot

size ∇⊥ ∼ 1/rs, then the 1D limit |∇2
⊥
a±| � |2k±∂τa±| is valid provided 1/(kprs)

4 �
[a2

0/(2γ4
⊥0)]|ζ|/τ in the four-wave resonant regime. This condition can be rewritten as 1 �

(4
√

2/γ2
⊥0)[(P/Pc)(kp/k0)(kp|ζ|)(ZR/τ)]1/2, where ZR = k0r

2
s/2 is the laser Rayleigh length

and Pc = k2
pa

2
0r

2
s/32 is the critical power for relativistic self-guiding. As may be expected,

for typical laser-plasma parameters (e.g., P/Pc ∼ 1, k0/kp ∼ 10, and kpL ∼ 10–100), the

1D model will no longer be valid for propagation distances longer than a Rayleigh length

τ > ZR.

As mentioned in Sec. II, high-phase velocity plasma waves can also be generated

by the two-dimensional Raman sidescatter instability. The influence of chirp on Ra-

man sidescatter can be studied by including a transverse wavenumber k⊥ in the anal-

ysis of Sec. III. It can be shown that Raman sidescatter can be neglected provided

(k⊥/kp)
4 � [a2

0/(4γ5
⊥0)](kp/k0)

2|ζ|/τ . The influence of chirp on Raman sidescatter and

the self-modulation instability will be the subject of a future publication.

G. RFS chirp asymmetry

As Table I indicates, the spatiotemporal growth rate in all regimes of RFS is larger for

a positively-chirped (∆e < 0) than for a negatively-chirped (∆e > 0) laser pulse. We may

examine the asymmetry between laser pulses with positive and negative chirp by considering

the ratio of the energy in the RFS generated plasma wave for the chirped to unchirped pump

laser pulse

E(τ ; ∆e)

E(τ ; 0)
=

∫

L
|χ(∆e)|2 dζ

∫

L
|χ(0)|2 dζ

. (36)

Figure 3(a) shows the plasma wave energy excited in the four-wave resonant regime by

a laser pulse with a linear frequency chirp normalized to the unchirped excitation energy

Eq. (36) versus propagation time kpτ , for a0 = 1, k0/kp = 10, and kpL = 40. Figure

3(b) shows the ratio of the plasma wave energy excited by positive and negative chirped

pulses E(−|∆e|)/E(|∆e|) versus the magnitude chirp |∆e| after propagating kpτ = 100, 200,

and 300, for a0 = 1, k0/kp = 10, and kpL = 40. Figure 3 illustrates the relatively small

influence of the frequency chirp on plasma wave generation. Physically the relatively weak
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dependence of chirp on the instability growth is due to the scattered daughter waves adopting

approximately the local resonant frequency as determined by the local frequency of the pump

laser pulse. Therefore the resonant excitation is maintained throughout the pulse. These

results are also consistent with recent experimental observations, as discussed in Sec. V.

IV. NUMERICAL RESULTS

To verify the analytical work of Sec. III, the nonlinear 1D cold Maxwell-fluid equations

were solved numerically. The details of the numerical methods used are discussed in Refs. 23

and 24. The numerical solution is carried out in terms of the cold fluid momentum equa-

tion, driven by the Lorentz force, together with the continuity equation for the evolution of

the plasma density and the Maxwell equations, coupled to the plasma current and charge

density. The numerical model retains the fast time-scale of the laser field. The plasma ions

are assumed stationary. No approximations, beyond the hydrodynamic assumptions are in-

troduced. For these examples, the equations were discretized using second-order methods in

both space and time. One of the significant advantages of partial differential equation based

models, especially when studying instabilities, is their inherent lack of “numerical” noise.

While the numerical solution is subject to various errors, including round-off, associated

with the unavoidable discretization of the underlying equations, these errors are manifest

as smooth alterations to the solution. There is no intrinsic source of “random” noise to

contaminate the solution. This allows for precise (reproducible) control over the seed for

the instability.

The numerically calculated growth of the RFS instability is plotted in Figs. 4 and 5.

In the numerical solutions, the laser pulse was initialized with a constant transverse vector

potential amplitude (flat-top longitudinal distribution with a smoothed head and tail) and

a linear frequency chirp. The laser pulse, initially in vacuum, propagates up a density ramp

[with scale length kpn/(dn/dζ) ' 50], which smoothly transitions into a uniform plasma.

The pulse was initialized outside the plasma to ensure self-consistent fluid and field initial

conditions. The propagation time was taken to be zero when the head of the pump laser

pulse reaches the center of the plasma density ramp.

Figure 4 shows the numerically calculated normalized longitudinal electric field Ez/E0,

where E0 = kpmc2/e, versus phase kpζ for both positive chirp ∆e = −0.2 (solid curve)
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and negative chirp ∆e = 0.2 (dashed curve) after the propagation time kpτ = 550 for the

parameters a0 = 0.5, kpL = 60, and k0/kp = 10. The fast density oscillations (at 2k0),

due to the electron quiver motion in the laser field, as well as the oscillations at the plasma

frequency, are clearly visible in the numerical solution shown in Fig. 4. The analytically

calculated amplitude χ (in the four-wave resonant regime) of the plasma wave is also plotted

in Fig. 4 for ∆e = −0.2 (dashed-dotted curve) and ∆e = 0.2 (dotted curve). The initial

seed of the analytic solution χ0 was chosen to correspond to the first peak of the plasma

oscillation in the numerical solution. In Fig. 4, good agreement in the growth of the plasma

wave amplitude versus distance behind the head ζ is observed between the analytic RFS

growth calculation [χ from Eq. (19)] and the peaks of the numerically calculated Ez/E0

curves.

In Fig. 5, the normalized longitudinal electric field Ez/Ez(0), calculated from numerical

integration of the nonlinear 1D cold-fluid equations, is plotted versus propagation time

kpτ at a fixed location behind the head of the pump laser pulse (|kpζ| = 32, with pulse

length kpL = 60) for positive (∆e = −0.2) and negative (∆e = 0.2) chirped laser pulses

with the parameters a0 = 0.5 and k0/kp = 10. The numerical calculation is compared

to the analytically calculated growth of the plasma wave amplitude [χ/χ0 from Eq. (19)].

The numerical solution includes the full nonlinear group velocity and pump laser evolution

effects, such as pump depletion. Good agreement is observed in Fig. 5 between analytically

and numerically calculated RFS growth. Agreement begins to breakdown in Fig. 5 between

the theoretical and numerically calculated curves for large propagation time as the RFS

instability begins to transition into the four-wave nonresonant regime.

V. DISCUSSION AND SUMMARY

In this work, we have presented a calculation of the spatiotemporal growth of the Raman

forward scattering instability produced by a frequency-chirped laser pulse propagating in

an underdense plasma using the relativistic Maxwell-fluid equations. It was shown that

a frequency chirp correlated to the longitudinal position within the laser pulse alters the

exponentiation of the RFS instability. Table I summarizes the RFS growth rates in various

regimes of the RFS instability. In particular, it was shown that positive chirped pulses (red

wavelengths at the head of the pulse and blue wavelengths at the tail of the pulse) have
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a larger growth rate than negative chirped pulses (blue wavelengths at the head and red

wavelengths at the tail).

The enhanced growth of the instability for positive chirp is due to the enhanced axial

energy transport at the head of the pulse resulting from the larger local growth rate (for

red wavelengths). This enhanced axial energy transport at the head produces enhanced

modulation of the plasma density. Since the group velocity of the plasma wave is very low

(vg � c), it slips back through the pulse, seeding the Raman instability. The scattered

daughter light waves adopt the local frequency ω±(ζ) = ω0(ζ) ± kpc/γ
1/2

⊥0 . Since both the

daughter and pump waves have group velocities vg ' c, resonance is maintained. This

continues to drive the plasma density modulation, resulting in larger growth of the instability

for positive chirp throughout the pulse.

The RFS instability is initially seeded by plasma density fluctuations or pump laser in-

tensity fluctuations which contain Fourier components at the relativistic plasma frequency

k = kp/γ
1/2

⊥0 . For example the seeding of the RFS may be generated by thermal fluctuations

in the plasma, ionization-induced plasma waves (owing to a time-varying dielectric)25–27, or

ponderomotively-excited plasma waves (owing to the laser intensity gradient)28,29. Experi-

ments often will use the same pump laser pulse which undergoes self-modulation to create

the plasma through ionization of a gas. Typically photoionization will occur very early in the

head of the laser pulse, where the laser electric field becomes sufficiently intense such that

the rate of ionization is maximum30. This will create a plasma density front moving with the

laser. The amplitude of the ionization-induced plasma waves created by this ionization front

will be approximately χ0 ∼ a2
0(ζionz)/4, where ζionz is the location in the pump laser pulse

where the laser electric field is sufficiently intense to ionize the background gas. Note that

the ionization location ζionz is weakly dependent on the chirp. For typical laser experimental

parameters, the shift in the ionization location is less than a laser wavelength ζionz < λ0. The

amplitude of the ponderomotively-excited plasma waves scales as χ0 ∼ a2
0/(kpL)2, where the

gradient in the laser pulse intensity is ∼ 1/L. For short laser pulses, the ponderomotively

excited plasma wave will typically dominate other sources for seeding the RFS instability.

Previous theoretical work by Dodd and Umstadter15 on Raman scattering of a chirped

laser pulse used a heuristic calculation of the group velocity dispersion (GVD) to estimate the

effect of a linear frequency chirp. Dodd and Umstadter claimed that, in the nonrelativistic

regime (a0 � 1), the amount of chirp necessary to eliminate the Raman scattering instability
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is ∆ω0 = (ω0/ωp)γR/2 where γR = (ωp/
√

8)(ωp/ω0)a0 is the usual unchirped temporal

growth rate. This predicts a complete stabilization using a bandwidth of ∆ω0/ω0 ' 1.8%

for the parameters a0 = 1 and ω0/ωp = 10. Furthermore PIC simulations of Dodd and

Umstadter imply stabilization of RFS using a 20% bandwidth for the parameters a0 = 1

and ω0/ωp = 10. In contrast, the analytic results presented in Sec. III, as well as numerical

solutions to the nonlinear 1D equations, show only a modest change in the RFS growth rate.

We find, for a 20% negative chirp (∆e = 0.2), the growth rate in the four-wave resonant

regime at the center of the pulse is reduced by only 4.7% compared to the unchirped growth

rate.

A linear chirp will affect the GVD, which can expand (for negative chirp) or contract (for

positive chirp) the pulse. The change in group velocity due to the frequency chirp is approxi-

mately ∆βg ' (ωp/ω0)
2∆ω0/ω0. The propagation distance LGVD required for the laser pulse

to bunch at the plasma wavelength (which will drive or suppress the RFS growth) due to a lin-

ear chirp over a plasma wavelength ∆ω0/ω0 = ∆eλp/L can be estimated as LGVD ' λp/∆βg.

For typical laser-plasma parameters (e.g., a0 ∼ 1, k0/kp ∼ 10, and kpL ∼ 10–100), the propa-

gation distance for GVD to drive or suppress the RFS growth is much greater than the growth

length for the RFS instability, i.e., kpLGVD ' (ω0/ωp)
2(kpL)/∆e � ωpγ

−1
R =

√
8(ω0/ωp)/a0.

This indicates that, although the chirp affects the GVD throughout the pulse, the enhanced

bunching due to GVD has an insignificant effect on the RFS process.

Recent experiments12,13 using long laser pulses (kpL � 1) with a frequency chirp

|∆e| ≈ 3% operating in the self-modulated laser wakefield regime have measured RFS growth

independent of the chirp. These experiments are consistent with the calculation presented in

Sec. III where a 3% chirp produces little asymmetry [cf. Sec. IIIG]. Experiments operating

in the regime kpL & 1, i.e., the standard laser wakefield accelerator regime, have reported

chirp-induced asymmetry in the measured Stokes wave13 and electron yield14. We believe

this asymmetry in the standard laser wakefield regime is due to preferential seeding of the

RFS instability by asymmetric pulse envelopes generated by nonlinear contributions to the

chirp in the laser compression system14.

To conclude, in this paper we have examined the Raman forward scattering of a frequency-

chirped short-pulse laser pulse of relativistic-intensity in an underdense plasma. The spa-

tiotemporal growth of the plasma wave was calculated using the relativistic Maxwell-fluid

equations for a laser pulse with a linear frequency chirp in various regimes. A new regime
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of RFS was identified, the strongly-coupled four-wave nonresonant regime, which is impor-

tant for relativistic laser intensities. It was shown that the growth rate of RFS increases

(decreases) for positive (negative) chirp. In addition, we have shown that a linear frequency

chirp with |∆e| � 1 produces only a small effect on the growth of the RFS instabilities,

and therefore will have only a minor effect on the enhancement or suppression of Raman

instabilities for laser-plasma applications such as laser-driven plasma wakefield accelerators,

laser-plasma-based radiation sources, and fast-ignitor fusion schemes.
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APPENDIX A: CHIRPED PULSE PROPAGATION

In this appendix we consider the propagation of a frequency-chirped low-intensity (a0 �
1) laser pulse in an underdense plasma. In the nonrelativistic regime a2

0 � 1 we may neglect

the plasma response ∂τχ ' 0. The 1D linear wave equation for a laser pulse propagating in

a homogeneous plasma, in the comoving variables (ζ, τ), is

[

∂2

∂τ 2
− 2

∂2

∂ζ∂τ
+ k2

p

]

a = 0 . (A1)

Consider a = â exp(ik0ζ), where â is a slowly-varying envelope. Substituting into the wave

equation Eq. (A1) yields

[

∂2

∂τ 2
− 2

(

ik0 +
∂

∂ζ

)

∂

∂τ
+ k2

p

]

â = 0 . (A2)

The term ∂2â/∂τ 2 may be neglected for short laser pulses propagating in underdense plas-

mas. Applying the Fourier transform F [â(ζ, τ)] = â(δk, τ) = âk(τ) yields the solution

âk = âk(0) exp

[ −ik2
pτ

2(k0 + δk)

]

. (A3)

Consider, as an initial condition, a laser pulse with a Gaussian axial profile and a linear

chirp:

â(ζ, τ = 0) = a0 exp
[

−
(

1− iεL2
)

ζ2/L2
]

, (A4)
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where L is the pulse length, and ε is the chirp parameter. The Fourier transform of the

initial condition Eq. (A4) is

âk(0) =
a0√
2

L

(1 + ε2L4)1/4
exp

[

i

2
tan−1

(

εL2
)

− (δk)2L2

4

(1 + iεL2)

(1 + ε2L4)

]

. (A5)

We will assume that |δk| ∼ 1/L � k0 and retain only second-order dispersive effects. With

this approximation, k0/(k0 + δk) ' 1− δk/k0 + (δk)2/k2
0, and the inverse Fourier transform

of Eq. (A3) yields the solution

a = a0

(

L

Le

)1/2

exp

[

ik0

(

ζ −
k2

pτ

2k2
0

)

+
i

2

(

tan−1 εL2 − tan−1 η
)

− ζ ′2

L2
e

(1− iη)

]

, (A6)

where

Le = L

(

1 + η2

1 + ε2L4

)1/2

(A7)

is the effective pulse length, η = εL2 + (1 + ε2L4)τ/ZD, and ZD = k3
0L

2/(2k2
p) is

the characteristic length for dispersive spreading31. The pulse envelope â propagates at

ζ ′ = z − βgct = ζ + τk2
p/(2k2

0), where the normalized group velocity is βg = 1 − k2
p/(2k2

0).

Note that ζ−τk2
p/(2k2

0) = z−βϕct, where the normalized phase velocity is βϕ = 1+k2
p/(2k2

0),

such that the dispersion relation ω2
0/c

2 = k2
0 + k2

p is approximately satisfied and βgβϕ ' 1.

The effective wave number of the pulse is ke = k0 + 2ηζ ′/L2
e.

Dispersion will cause broadening of the pulse length. A frequency chirp will modify

the pulse broadening, as indicated in Eq. (A7). A positive chirp (ε < 0) will have red

wavelengths in the front of the pulse and blue wavelengths in the back of the pulse, such

that the group velocity is larger in the back than the front, resulting in pulse compression.

Figure 6 shows the effective pulse length Le/L versus propagation time τ/ZD for a laser

pulse with positive chirp εL2 = −0.5, negative chirp εL2 = 0.5, and zero chirp ε = 0. As

the figure shows, pulse compression occurs for a positively-chirped pulse for propagation

times τ/ZD < 2|ε|L2/(1 + ε2L4), with the minimum pulse length of Le = 1/(ε2L3) at the

propagation time τ/ZD = 1/(|ε|L2).

For short propagation distances τ � ZD the dispersive broadening of the pulse may be

neglected, and the pump laser evolves as

a = a0 exp

[

ik0

(

ζ −
τk2

p

2k2
0

)]

exp

[

−ζ ′2

L2

(

1− iεL2
)

]

,

where the effective wave number is ke = k0 + 2εζ ′. The characteristic length for dispersive

spreading is typically much longer than the growth length for Raman instabilities, i.e.,
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kpZD = (kpL)2(k0/kp)
3/2 � kpΓ

−1
4 =

√
8γ2

⊥0(k0/kp)/|a0| for a0 ∼ 1, k0/kp � 1, and

kpL ∼ 1 (i.e., we may consider the rate at which a single modulation of length ∼ λp

disperses). In Sec. III we have neglected dispersive broadening and assumed a flat-top

intensity distribution propagating in an underdense plasma well below the critical density,

such that apump ' (a0/2) exp[iϕ0(ζ)] + c.c., where ϕ0 = k0ζ + (∆ke/2)ζ(1 + ζ/L).

APPENDIX B: DISPERSION RELATION

In this appendix we review the dispersion relation for 1D Raman scattering of an infinite

homogeneous laser. Equations (11)–(13) describe the coupling of the plasma wave and

scattered light waves. In the infinite homogeneous pump limit, Eqs. (11)–(13) may be

combined to yield the following dispersion relation for Raman scattering

Dp

k2 −Dp

=
k2

p|a0|2
4γ3

⊥0

(

1

D−

+
1

D+

)

. (B1)

Here Dp = ω2/c2−k2
p/γ⊥0 is the dispersion relation for the plasma wave, and D± = ω2

±
/c2−

k2
±
− k2

p/γ⊥0 is the dispersion relation for each scattered wave, with ω± = ω0 ± ω and

k± = k0 ± k. The pump laser pulse satisfies the equilibrium dispersion relation D0 =

ω2
0/c

2 − k2
0 − k2

p/γ⊥0 = 0. The dispersion relation for Raman scattering Eq. (B1) can be

used to calculate the purely temporal growth rates in the long pulse limit (i.e., infinite

homogeneous pump laser pulse without chirp)5. Equation (B1) is valid for a relativistic

pump laser pulse and, in the limit a0 � 1, reduces to the well-known weakly-relativistic

dispersion relation.

In the weakly-coupled regime, the frequency of the plasma wave is approximately the

plasma frequency ω = kpc/γ⊥0 + δω, where δω � ω, and the dispersion relation for the

plasma wave is c2Dp ' −2kpcδω/γ⊥0. The plasma wave number k ' kp/γ
1/2

⊥0 is determined

from the resonance conditions D− = 0 and D0 = 0.

In the four-wave regime, c2D± ' −2(kpc/γ⊥0 ± ω0)δω. Substituting into the Raman

dispersion relation Eq. (B1), yields the temporal growth rate in the four-wave resonant

regime γ4 = Im(δω) = k2
pc

2|a0|/(
√

8ω0γ⊥0).

In the four-wave nonresonant regime, c2D− ' 2(ω0 − kpc/γ⊥0)δω and D+ '
−2k4

pc
2/(γ2

⊥0ω
2
0). Substituting into the Raman dispersion relation Eq. (B1), yields

the temporal growth rate in the four-wave nonresonant regime γ4nr = Im(δω) =
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(
√

3/27/3)|a0|2/3(kpc/ω0)
4/3kpc/γ

11/6

⊥0 .

In the three-wave regime |D+| � |D−| and c2D− ' 2ω0δω. The 1D Raman dispersion

relation Eq. (B1), yields the temporal growth rate γ3 = Im(δω) = (kpc)
3/2|a0|/(4γ

7/4

⊥0 ω
1/2

0 )

in the three-wave regime.

In the strongly-coupled regime, the growth rate is much greater than the plasma fre-

quency, therefore ω ' δω with δω � kpc/γ
1/2

⊥0 , and the dispersion relation for the plasma

wave is c2Dp ' δω2.

In the strongly-coupled four-wave nonresonant regime, c2D− ' −2ω0δω and D+ '
2ω0δω−2k4

pc
2/(γ2

⊥0ω
2
0). Substituting into the Raman dispersion relation Eq. (B1), yields the

temporal growth rate in the strongly-coupled four-wave nonresonant regime γ4sc = Im(δω) =

2−3/4|a0|1/2(kpc)
2/(ω0γ

3/2

⊥0 ).

In the three-wave regime |D+| � |D−| and c2D− ' −2ω0δω. The 1D Ra-

man dispersion relation Eq. (B1) yields the temporal growth rate γ3sc = Im(δω) =

(
√

3/4)kpc(kpc/ω0)
1/3|a0|2/3kpc/γ

4/3

⊥0 in the strongly-coupled three-wave regime.

Comparing the temporal growth rates derived from the dispersion relation in the infinite

homogeneous pump limit Eq. (B1) with the spatiotemporal growth rates derived in Sec. III,

one finds the same scaling with the parameters a0, kp, and k0 in each regime of the RFS

instability.

The dispersion relation Eq. (B1) also contains the physics of Raman backscatter (RBS).

For direct RBS, only the counterpropagating Stokes wave is resonant, and the resonant

condition ϕ0 = ϕ−+ϕp implies k ' 2k0 and D− ' −2ω0ω. The dispersion relation Eq. (B1)

can be expressed for RBS as

ω
(

ω2 + k2
pc

2γ−1
⊥0

)

=
k2

pc
2|a0|2ω0

2γ3
⊥0

= ω3
c , (B2)

where ωc is the strength of coupling between the backscattered light and the density per-

turbation. In the weakly-coupled or Raman regime5, ωc � kcc/γ
1/2

⊥0 , which will be satisfied

provided a0 � 1, and the dispersion relation yields the temporal growth rate Im(ω) =

(ω0kpc)
1/2|a0|/2. In the strongly-coupled or Compton regime20, ωc � kcc/γ

1/2

⊥0 , and the

dispersion relation yields the temporal growth rate Im(ω) =
√

3/24/3(a
2/3

0 /γ⊥0)(k
2
pc

2ω2
0)

1/3.
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TABLE I: Raman forward scattering growth rates (number of e-folds) in the four-wave resonant

(N4), four-wave nonresonant (N4nr), three-wave (N3), strongly-coupled four-wave nonresonant

(N4sc), and strongly-coupled three-wave (N3sc) regimes, including frequency chirp for |∆e| � 1.

Exponentiation : Regime :

N4 '
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21/2

a0

γ2
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FIG. 1: Growth of plasma wave potential χ/χ0 due to RFS versus phase kpζ at three times

kpτ = 100, kpτ = 200, and kpτ = 300 for the parameters: a0 = 1, k0/kp = 10, and kpL = 40. Solid

line is laser pulse without chirp ∆e = 0, dashed line is laser pulse with negative chirp ∆e = 0.1,

and dotted line is laser pulse with positive chirp ∆e = −0.1.

FIG. 2: Regimes of RFS instability [in parameter space (a0,|ζ|/τ) for k0/kp = 10]: (1) four-wave

resonant, (2) four-wave nonresonant, (3) three-wave, (4) strongly-coupled four-wave nonresonant,

and (5) strongly-coupled three-wave.

FIG. 3: (a) The plasma wave energy excited by a frequency chirped laser pulse normalized to the

unchirped excitation energy versus propagation time kpτ for several chirps ∆e = -0.1, -0.05, 0, 0.05,

and 0.1, with a0 = 1, k0/kp = 10 and kpL = 40. (b) The ratio of the plasma wave energy excited

by positive and negative chirped pulses E(−|∆e|)/E(|∆e|) versus chirp |∆e| after kpτ = 100, 200,

and 300, with a0 = 1, k0/kp = 10, and kpL = 40.

FIG. 4: Numerically calculated longitudinal electric field Ez/E0 for ∆e = −0.2 (solid curve) and

∆e = 0.2 (dashed curve) versus distance behind the head of the pump laser pulse kpζ for a0 = 0.5

and k0/kp = 10. Also shown is the theoretically calculated growth of the plasma wave amplitude

χ for ∆e = −0.2 (dashed-dotted curve) and ∆e = 0.2 (dotted curve).

FIG. 5: Numerically calculated normalized longitudinal electric field Ez/Ez(0) (dotted curves) and

theoretically calculated plasma wave amplitude χ/χ0 (solid curves) plotted versus propagation time

kpτ at fixed distance behind the head of the pump laser pulse for positive (∆e = −0.2) and negative

(∆e = 0.2) chirp, with a0 = 0.5 and k0/kp = 10.

FIG. 6: Effective pulse length Le/L versus propagation time τ/ZD for a laser pulse with positive

εL2 = −0.5, negative εL2 = 0.5, and zero ε = 0 chirp.
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